Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474298

RESUMO

The rapid increase in the antibiotic resistance of microorganisms, capable of causing diseases in humans as destroying cultural heritage sites, is a great challenge for modern science. In this regard, it is necessary to develop fundamentally novel and highly active compounds. In this study, a series of N4-alkylcytidines, including 5- and 6-methylcytidine derivatives, with extended alkyl substituents, were obtained in order to develop a new generation of antibacterial and antifungal biocides based on nucleoside derivatives. It has been shown that N4-alkyl 5- or 6-methylcytidines effectively inhibit the growth of molds, isolated from the paintings in the halls of the Ancient Russian Paintings of the State Tretyakov Gallery, Russia, Moscow. The novel compounds showed activity similar to antiseptics commonly used to protect works of art, such as benzalkonium chloride, to which a number of microorganisms have acquired resistance. It was also shown that the activity of N4-alkylcytidines is comparable to that of some antibiotics used in medicine to fight Gram-positive bacteria, including resistant strains of Staphylococcus aureus and Mycobacterium smegmatis. N4-dodecyl-5- and 6-methylcytidines turned out to be the best. This compound seems promising for expanding the palette of antiseptics used in painting, since quite often the destruction of painting materials is caused by joint fungi and bacteria infection.


Assuntos
Anti-Infecciosos Locais , Desinfetantes , Pinturas , Humanos , Desinfetantes/farmacologia , Bactérias , Fungos , Antibacterianos
2.
Pharmaceutics ; 16(1)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276518

RESUMO

Antimicrobial peptides (AMPs) have recently attracted attention as promising antibacterial agents capable of acting against resistant bacterial strains. In this work, an approach was applied, consisting of the conjugation of a peptide related to the sequences of bactenecin 7 (Bac7) and oncocin (Onc112) with the alkyl(triphenyl)phosphonium (alkyl-TPP) fragment in order to improve the properties of the AMP and introduce new ones, expand the spectrum of antimicrobial activity, and reduce the inhibitory effect on the eukaryotic translation process. Triphenylphosphonium (TPP) derivatives of a decapeptide RRIRPRPPYL were synthesized. It was comprehensively studied how the modification of the AMP affected the properties of the new compounds. It was shown that while the reduction in the Bac7 length to 10 a.a. residues dramatically decreased the affinity to bacterial ribosomes, the modification of the peptide with alkyl-TPP moieties led to an increase in the affinity. New analogs with structures that combined a decapeptide related to Bac7 and Onc112-Bac(1-10, R/Y)-and TPP attached to the C-terminal amino acid residue via alkylamide linkers, inhibited translation in vitro and were found to be more selective inhibitors of bacterial translation compared with eukaryotic translation than Onc112 and Bac7. The TPP analogs of the decapeptide related to Bac7 and Onc112 suppressed the growth of both Gram-negative bacteria, similar to Onc112 and Bac7, and Gram-positive ones, similar to alkyl-TPP derivatives, and also acted against some resistant laboratory strains. Bac(1-10, R/Y)-C2-TPP, containing a short alkylamide linker between the decapeptide and TPP, was transferred into the E. coli cells via the SbmA transporter protein. TPP derivatives of the decapeptide Bac(1-10, R/Y) containing either a decylamide or ethylamide linker caused B. subtilis membrane depolarization, similar to alkyl-TPP. The Bac(1-10, R/Y)-C2-TPP analog was proven to be non-toxic for mammalian cells using the MTT test.

3.
Biomolecules ; 13(10)2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37892133

RESUMO

New antibiotics are unquestionably needed to fight the emergence and spread of multidrug-resistant bacteria. To date, antibiotics targeting bacterial central metabolism have been poorly investigated. By determining the minimal inhibitory concentration (MIC) of desmethylphosphinothricin (Glu-γ-PH), an analogue of glutamate with a phosphinic moiety replacing the γ-carboxyl group, we previously showed its promising antibacterial activity on Escherichia coli. Herein, we synthetized and determined the growth inhibition exerted on E. coli by an L-Leu dipeptide derivative of Glu-γ-PH (L-Leu-D,L-Glu-γ-PH). Furthermore, we compared the growth inhibition obtained with this dipeptide with that exerted by the free amino acid, i.e., Glu-γ-PH, and by their phosphonic and non-desmethylated analogues. All the tested compounds were more effective when assayed in a chemically-defined minimal medium. The dipeptide L-Leu-D,L-Glu-γ-PH had a significantly improved antibacterial activity (2 µg/mL), at a concentration between the non-desmethytaled (0.1 µg/mL) and the phosphonic (80 µg/mL) analogues. Also, in Bacillus subtilis, the dipeptide L-Leu-D,L-Glu-γ-PH displayed an activity comparable to that of the antibiotic amoxicillin. This work highlights the antibacterial relevance of the phosphinic pharmacophore and proposes new avenues for the development of novel antimicrobial drugs containing the phosphinic moiety.


Assuntos
Bacillus subtilis , Dipeptídeos , Bacillus subtilis/metabolismo , Dipeptídeos/química , Escherichia coli/metabolismo , Ácido Glutâmico/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo
4.
ChemMedChem ; 18(21): e202300366, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37707314

RESUMO

The emergence of drug-resistant strains of pathogenic microorganisms necessitates the creation of new drugs. A series of uridine derivatives containing an extended substituent at the C-5 position as well as C-5 alkyloxymethyl, alkylthiomethyl, alkyltriazolylmethyl, alkylsulfinylmethyl and alkylsulfonylmethyl uridines were obtained in order to explore their antimicrobial properties and solubility. It has been shown that new ribonucleoside derivatives have an order of magnitude better solubility in water compared to their 2'-deoxy analogues and effectively inhibit the growth of a number of Gram-positive bacteria, including resistant strains of Mycobacterium smegmatis (MIC=15-200 µg/mL) and Staphylococcus aureus (MIC=25-100 µg/mL). Their activity is comparable to that of some antibiotics used in medicine.


Assuntos
Antibacterianos , Anti-Infecciosos , Uridina/farmacologia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Bactérias Gram-Positivas , Bactérias Gram-Negativas
5.
Molecules ; 28(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36770901

RESUMO

The fast spread of bacteria that are resistant to many classes of antibiotics (multidrug resistant) is a global threat to human and animal health with a worrisome scenario ahead. Novel therapeutical strategies are of crucial importance to combat this phenomenon. For this purpose, we investigated the antimicrobial properties of the naturally occurring tripeptide Bialaphos and a dipeptide L-leucyl-L-phosphinoithricin, the synthesis and diastereomers separation of which are herein described. We demonstrate that these compounds are effective on clinical isolates of the human pathogen Klebsiella pneumoniae, causing hospital-acquired and community-acquired infections. The tested isolates were remarkable for their resistance to more than 20 commercial antibiotics of different classes. Based on previous literature data and our experiments consisting of glutamine supplementation, we suggest that both compounds release phosphinothricin-a well-known nanomolar inhibitor of glutamine synthetase-after their penetration in the bacterial cells; and, in this way, exert their antibacterial effect by negatively affecting nitrogen assimilation in this pathogen.


Assuntos
Anti-Infecciosos , Infecções por Klebsiella , Humanos , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Farmacorresistência Bacteriana Múltipla , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Peptídeos/farmacologia
6.
Antibiotics (Basel) ; 12(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36671216

RESUMO

In order to obtain antimicrobial compounds with improved properties, new conjugates comprising two different biologically active agents within a single chimeric molecule based on chloramphenicol (CHL) and a hydrophobic cation were synthesized and studied. Chloramphenicol amine (CAM), derived from the ribosome-targeting antibiotic CHL, and the plant isoquinoline alkaloid berberine (BER) are connected by alkyl linkers of different lengths in structures of these conjugates. Using competition binding, double reporter system, and toeprinting assays, we showed that synthesized CAM-Cn-BER compounds bound to the bacterial ribosome and inhibited protein synthesis like the parent CHL. The mechanism of action of CAM-C5-BER and CAM-C8-BER on the process of bacterial translations was similar to CHL. Experiments with bacteria demonstrated that CAM-Cn-BERs suppressed the growth of laboratory strains of CHL and macrolides-resistant bacteria. CAM-C8-BER acted against mycobacteria and more selectively inhibited the growth of Gram-positive bacteria than the parent CHL and the berberine derivative lacking the CAM moiety (CH3-C8-BER). Using a potential-sensitive fluorescent probe, we found that CAM-C8-BER significantly reduced the membrane potential in B. subtilis cells. Crystal violet assays were used to demonstrate the absence of induction of biofilm formation under the action of CAM-C8-BER on E. coli bacteria. Thus, we showed that CAM-C8-BER could act both on the ribosome and on the cell membrane of bacteria, with the alkylated berberine fragment of the compound making a significant contribution to the inhibitory effect on bacterial growth. Moreover, we showed that CAM-Cn-BERs did not inhibit eukaryotic translation in vitro and were non-toxic for eukaryotic cells.

7.
Int J Food Sci ; 2021: 6691428, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631875

RESUMO

Fungi Eurotium spp. are the main biological agents that ferment the leaves of the Camellia sinensis tea bush to form a popular food product, postfermented tea. The fungus E. cristatum, stored in the collection of the Gause Institute of New Antibiotics under the number INA 01267, was isolated and identified from a briquette of Fujian Chinese tea. The species identification was carried out based on morphocultural characteristics and DNA sequencing. This study is aimed at determining the feasibility of making postfermented herbal teas using E. cristatum and to evaluate their quality. Autofermented herbal teas from Chamaenerion angustifolium (fireweed) and Malus domestica (apple tree) served as the starting material for this study. The change in the concentration of phenolic compounds, organic acids, sugars, and free amino acids was observed for herbal teas subjected to postfermentation with E. cristatum INA 01267. It was found that the E. cristatum INA 01267 strain does not have antimicrobial activity and does not form mycotoxins, which is an indicator of food safety.

8.
Antibiotics (Basel) ; 10(10)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34680834

RESUMO

The emergence of antibiotic-resistant pathogenic bacteria in recent decades leads us to an urgent need for the development of new antibacterial agents. The species of the genus Amycolatopsis are known as producers of secondary metabolites that are used in medicine and agriculture. The complete genome sequences of the Amycolatopsis demonstrate a wide variety of biosynthetic gene clusters, which highlights the potential ability of actinomycetes of this genus to produce new antibiotics. In this review, we summarize information about antibiotics produced by Amycolatopsis species. This knowledge demonstrates the prospects for further study of this genus as an enormous source of antibiotics.

9.
Eur J Med Chem ; 215: 113212, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33582576

RESUMO

The emergence of drug-resistant strains of pathogenic microorganisms necessitates the creation of new drugs. In order to find new compounds that effectively inhibit the growth of pathogenic bacteria and fungi, we synthesized a set of N4-derivatives of cytidine, 2'-deoxycytidine and 5-metyl-2'-deoxycytidine bearing extended N4-alkyl and N4-phenylalkyl groups. The derivatives demonstrate activity against a number of Gram-positive bacteria, including Mycobacterium smegmatis (MIC = 24-200 µM) and Staphylococcus aureus (MIC = 50-200 µM), comparable with the activities of some antibiotics in medical use. The most promising compound appeared to be N4-dodecyl-5-metyl-2'-deoxycytidine 4h with activities of 24 and 48 µM against M. smegmatis and S. aureus, respectively, and high inhibitory activity of 0.5 mM against filamentous fungi that can, among other things, damage works of art, such as tempera painting. Noteworthy, some of other synthesized compounds are active against fungal growth with the inhibitory concentration in the range of 0.5-3 mM.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Citidina/análogos & derivados , Citidina/farmacologia , Células A549 , Animais , Antibacterianos/síntese química , Antibacterianos/toxicidade , Antifúngicos/síntese química , Antifúngicos/toxicidade , Bactérias/efeitos dos fármacos , Citidina/toxicidade , Descoberta de Drogas , Fungos/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana
10.
Life (Basel) ; 10(6)2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580283

RESUMO

In this study, the microbial communities of two nests of black garden ants (Lasius niger) in the hollows of stem branches of old apple trees were found to have similar species compositions: each community contained representatives of three species from the Bacillaceae family and one species of actinomycetes from the genus Streptomyces. In total, four types of bacilli and two actinomycetes were isolated. Actinomycetes were identified as Streptomyces antibioticus-like and Streptomyces sp. None of the bacilli had antibiotic activity, whereas both streptomycetes produced antibiotics that inhibited the growth of Gram-positive bacteria in vitro, including isolates from their community. Antibiotic compounds of S. antibioticus-like strain INA 01148 (Institute of New Antibiotics) were identified as actinomycin D and its closest homologue, actinomycin A. Actinomycins presumably change the microbial community of the ant nest substrate as they act against Gram-positive bacteria and against fungi and Gram-negative bacteria. The antibiotic activity of the isolated Streptomyces sp. INA 01156 is of interest, since the substances produced by this strain inhibit the growth of drug-resistant bacteria, including methicillin-resistant Staphylococcus aureus INA 00761 (MRSA) and vancomycin-resistant strain Leuconostoc mesenteroides VKPM B-4177 (VR) (VKPM-National Collection of Industrial Microorganisms (Russian acronym)).

11.
J Antibiot (Tokyo) ; 73(4): 236-246, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31932744

RESUMO

Recently we have synthesized a set of pyrimidine nucleoside derivatives bearing extended alkyltriazolylmethyl substituents at position 5 of the nucleic base, and showed their significant activity against Mycobacterium tuberculosis virulent laboratory strain H37Rv as well as drug-resistant MS-115 strain. The presence of a lengthy hydrophobic substituent leads to the reduction of nucleoside water solubility making their antibacterial activity troublesome to study. A series of water-soluble forms of 5-modified 2'-deoxyuridines 4a-c and 8a-c were synthesized. They appeared at least two orders more soluble compared with the parent compounds 1a and 1b. Their half-hydrolysis time was 5-12 h, which can be considered optimal for prodrugs used in clinics. Obtained compounds showed moderate activity (MIC 48-95 µg·ml-1) against some Gram-positive bacteria including resistant strains of Staphylococcus aureus and Mycobacterium smegmatis and were low cytotoxic for human cell lines (CD50 >> 100 µg·ml-1).


Assuntos
Antibacterianos/farmacologia , Desoxiuridina/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Linhagem Celular , Desoxiuridina/síntese química , Desoxiuridina/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Pró-Fármacos , Solubilidade , Relação Estrutura-Atividade , Água/química
12.
J Antibiot (Tokyo) ; 72(7): 535-544, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30792519

RESUMO

The emergence of new drug-resistant strains of bacteria necessitates the development of principally new antibacterial agents. One of the novel classes of antibacterial agents is nucleoside analogs. We have developed a fast and simple one-pot method for preparation of α- and ß-anomers of 5-modified 6-aza- and 2-thio-6-aza-2'-deoxyuridine derivatives in high yields. 2-Thio derivatives demonstrated moderate activity against Mycobacterium smegmatis (MIC = 0.2-0.8 mM), Staphylococcus aureus (MIC = 0.03-0.9 mM) and some other Gram-positive bacteria. 2'-Deoxy-2-thio-5-phenyl-6-azauridine (2b) effectively suppressed the growth of Gram-negative bacteria Pseudomonas aeruginosa ATCC 27853 (MIC = 0.03 mM)-the one that causes diseases difficult to treat due to high resistance to antibiotics. 5'-Monophosphates of compounds 2a, b and 3a, b were docked into a binding site of Mycobacterium tuberculosis flavin-dependent thymidylate synthase (ThyX) enzyme. The molecular modeling demonstrates the possibility of binding of the 5-modified 2-thio-6-aza-2'-deoxyuridine 5'-monophosphates within the active site of the enzyme and thereby inhibiting the growth of the bacteria.


Assuntos
Antibacterianos/síntese química , Azauridina/análogos & derivados , Azauridina/síntese química , Animais , Antibacterianos/farmacologia , Azauridina/farmacologia , Domínio Catalítico , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Timidilato Sintase/efeitos dos fármacos
13.
Molecules ; 23(12)2018 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-30477147

RESUMO

A series of novel 5'-norcarbocyclic derivatives of 5-alkoxymethyl or 5-alkyltriazolyl-methyl uracil were synthesized and the activity of the compounds evaluated against both Gram-positive and Gram-negative bacteria. The growth of Mycobacterium smegmatis was completely inhibited by the most active compounds at a MIC99 of 67 µg/mL (mc²155) and a MIC99 of 6.7⁻67 µg/mL (VKPM Ac 1339). Several compounds also showed the ability to inhibit the growth of attenuated strains of Mycobacterium tuberculosis ATCC 25177 (MIC99 28⁻61 µg/mL) and Mycobacterium bovis ATCC 35737 (MIC99 50⁻60 µg/mL), as well as two virulent strains of M. tuberculosis; a laboratory strain H37Rv (MIC99 20⁻50 µg/mL) and a clinical strain with multiple drug resistance MS-115 (MIC99 20⁻50 µg/mL). Transmission electron microscopy (TEM) evaluation of M. tuberculosis H37Rv bacterial cells treated with one of the compounds demonstrated destruction of the bacterial cell wall, suggesting that the mechanism of action for these compounds may be related to their interactions with bacteria cell walls.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Antituberculosos/química , Antituberculosos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/ultraestrutura , Relação Estrutura-Atividade , Uracila/análogos & derivados , Uracila/química , Uracila/farmacologia
14.
Antibiotics (Basel) ; 7(4)2018 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-30380603

RESUMO

Because of the spread of drug resistance, it is necessary to look for new antibiotics that are effective against pathogenic microorganisms. The purpose of this study was to analyse the species composition of actinobacteria isolated from the digestive tract of the millipedes Nedyopus dawydoffiae and to determine their antimicrobial properties. Species identification was carried out on the basis of the morphological and culture properties and the sequence of the 16S rRNA gene. Actinobacteria were grown in different liquid media. Antibiotic properties were determined against some Gram-positive and Gram-negative bacteria as well as fungi. Of the 15 isolated strains, 13 have antibiotic activity against Gram-positive bacteria (including methicillin-resistant Staphylococcus aureus-MRSA) and fungi, but there was no antibiotic activity against Gram-negative test strains Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853. It was established that antibiotic-producing actinobacteria belong to eight species of the genus Streptomyces. Depending on the nutrient medium, actinobacteria demonstrate different antimicrobial activities. As an example, S. hydrogenans shows that even strains selected in one population differ by the range of antimicrobial activity and the level of biosynthesis. Since the antibiotic production is considered as a feature for species competition in the microbiota community, the variability of antibiotic production among different strains of the same species is an adaptive characteristic for the competition in millipedes' digestive tract community.

15.
Medchemcomm ; 9(4): 667-675, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30108957

RESUMO

The study of an archived sample of crystallomycin complex using HPLC, ESI HRMS, and 2D NMR showed that two major components of the antibiotic, compounds 1 and 2, are lipopeptides having the same peptide core, Asp1-cyclo(Dab2-Pip3-MeAsp4-Asp5-Gly6-Asp7-Gly8-Dab9-Val10-Pro11-), N-acylated either with Δ3-iso-tetradecenoyl or Δ3-anteiso-pentadecenoyl that are identical to aspartocins C and B, respectively. According to the 2D NMR study, compound 2 in DMSO solution exists as a mixture of four conformers. The producing strain was identified as Streptomyces griseorubens. Compounds 1 and 2 have considerable Ca2+-dependent activity against Gram-positive bacteria including five MRSA strains.

16.
Antimicrob Agents Chemother ; 60(12): 7481-7489, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27736765

RESUMO

In order to accelerate drug discovery, a simple, reliable, and cost-effective system for high-throughput identification of a potential antibiotic mechanism of action is required. To facilitate such screening of new antibiotics, we created a double-reporter system for not only antimicrobial activity detection but also simultaneous sorting of potential antimicrobials into those that cause ribosome stalling and those that induce the SOS response due to DNA damage. In this reporter system, the red fluorescent protein gene rfp was placed under the control of the SOS-inducible sulA promoter. The gene of the far-red fluorescent protein, katushka2S, was inserted downstream of the tryptophan attenuator in which two tryptophan codons were replaced by alanine codons, with simultaneous replacement of the complementary part of the attenuator to preserve the ability to form secondary structures that influence transcription termination. This genetically modified attenuator makes possible Katushka2S expression only upon exposure to ribosome-stalling compounds. The application of red and far-red fluorescent proteins provides a high signal-to-background ratio without any need of enzymatic substrates for detection of the reporter activity. This reporter was shown to be efficient in high-throughput screening of both synthetic and natural chemicals.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Biossíntese de Proteínas/efeitos dos fármacos , Ribossomos/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Dano ao DNA , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Corantes Fluorescentes/química , Genes Reporter , Engenharia Genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Regiões Promotoras Genéticas , Ribossomos/genética , Resposta SOS em Genética
17.
Mol Cell ; 56(4): 531-40, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25306919

RESUMO

We demonstrate that the antibiotic amicoumacin A (AMI) is a potent inhibitor of protein synthesis. Resistance mutations in helix 24 of the 16S rRNA mapped the AMI binding site to the small ribosomal subunit. The crystal structure of bacterial ribosome in complex with AMI solved at 2.4 Å resolution revealed that the antibiotic makes contacts with universally conserved nucleotides of 16S rRNA in the E site and the mRNA backbone. Simultaneous interactions of AMI with 16S rRNA and mRNA and the in vivo experimental evidence suggest that it may inhibit the progression of the ribosome along mRNA. Consistent with this proposal, binding of AMI interferes with translocation in vitro. The inhibitory action of AMI can be partly compensated by mutations in the translation elongation factor G.


Assuntos
Antibacterianos/química , Cumarínicos/química , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/química , Estabilidade de RNA , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação , Cumarínicos/farmacologia , Cristalografia por Raios X , Farmacorresistência Bacteriana , Escherichia coli , Testes de Sensibilidade Microbiana , Modelos Moleculares , Fator G para Elongação de Peptídeos/genética , Inibidores da Síntese de Proteínas/farmacologia , RNA Mensageiro/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/química , Subunidades Ribossômicas Menores de Bactérias/química , Staphylococcus aureus/genética , Thermus thermophilus
18.
Bioorg Med Chem ; 21(17): 4874-84, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23891229

RESUMO

Two sets of pyrimidine nucleoside derivatives bearing extended alkyloxymethyl or alkyltriazolidomethyl substituents at position 5 of the nucleobase were synthesized and evaluated as potential antituberculosis agents. The impact of modifications at 3'- and 5'-positions of the carbohydrate moiety on the antimycobacterial activity and cytotoxicity was studied. The highest effect was shown for 5-dodecyloxymethyl-2'-deoxyuridine, 5-decyltriazolidomethyl-2'-deoxyuridine, and 5-dodecyltriazolidomethyl-2'-deoxycytidine. They effectively inhibited the growth of two Mycobacterium tuberculosis strains in vitro, laboratory H37Rv (MIC99=20, 10, and 20µg/mL, respectively) and clinical MDR MS-115 resistant to five top antituberculosis drugs (МIC99=50, 10, and 10µg/mL, respectively).


Assuntos
Antituberculosos/síntese química , Nucleosídeos de Pirimidina/química , Animais , Antituberculosos/farmacologia , Antituberculosos/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Humanos , Células Jurkat , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/isolamento & purificação , Nucleosídeos de Pirimidina/farmacologia , Nucleosídeos de Pirimidina/toxicidade , Relação Estrutura-Atividade , Células Vero
19.
Antimicrob Agents Chemother ; 56(4): 1774-83, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22252829

RESUMO

A reporter construct was created on the basis of the transcription attenuator region of the Escherichia coli tryptophan operon. Dual-fluorescent-protein genes for red fluorescent protein and cerulean fluorescent protein were used as a sensor and internal control of gene expression. The sequence of the attenuator was modified to avoid tryptophan sensitivity while preserving sensitivity to ribosome stalling. Antimicrobial compounds which cause translation arrest at the stage of elongation induce the reporter both in liquid culture and on an agar plate. This reporter could be used for high-throughput screening of translation inhibitors.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Proteínas Luminescentes/genética , Elongação Traducional da Cadeia Peptídica/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Ágar , Sequência de Aminoácidos , Antibacterianos/biossíntese , Antibacterianos/farmacologia , Meios de Cultura , Escherichia coli/metabolismo , Fermentação , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genes Reporter/genética , Micromonospora/metabolismo , Dados de Sequência Molecular , Óperon , Inibidores da Síntese de Proteínas/farmacologia , Ribossomos/efeitos dos fármacos , Siphoviridae/genética , Triptofano/genética , Triptofano/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...